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Motivation 2

Applications in Medicine

• estimation of survival chances

• classification of patients with respect to their sensitivity to treatment

• reproduction of test results without using invasive methods

Other Applications

• company rating based on survival probability

• insurance
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Motivation 3

General Approach

• estimate the probability of death in period t given that the patient

has survived up to period t − 1

• What statistical methods are suitable?
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Motivation 4

Standard Methodology

• Cox proportional hazard regression (1972)

A semi-parametric model based on a generalised linear model

lnhi(t) = a(t) + b1xi1 + b2xi2 + ... + bdxid

or explicitly for the hazard hi(t)

hi(t) = h0(t) exp(b1xi1 + b2xi2 + ... + bdxid)

The hazard ratio for any two observations is independent of time t:

hi(t)

hj(t)
=

h0(t)e
ηi

h0(t)eηj
=

eηi

eηj

where ηi = b1xi1 + b2xi2 + ... + bdxid
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Motivation 5

Proposed Methodology

• at time t break all surviving patients into two groups:

1. those who will die in period t + 1

2. the rest patients who will survive in period t + 1

• train a classification machine on these two groups

• repeat the procedure for all t ∈ {0, 1, ..., T − 1}

Alltogether we will get T differently trained classification machines

What classification method to apply?

Survival Analysis with SVMs



Motivation 6

Multivariate Discriminant Analysis

• Fisher (1931)

The score:

Si = a1xi1 + a2xi2 + ... + adxid = a⊤xi

xi are screening and test results for the i-th patient

survival: Si ≥ s

death: Si < s
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Linear Discriminant Analysis

X1

X2 Survival

x

o

o

Death

x

x

x

xx

x

x

x x

x

x

x

x

x
x x

x

x

x

x

x

x

x x
x

x x

xx

o

o

o
o

o

o

o o

o
oo

o
o

o

o o

o

oo

o

o
o

o

o

oo
o

o

o

o

o
o

o

o

o
o

x

x

x

x

Survival Analysis with SVMs



Motivation 8
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Motivation 9

Other Models

• Logit

E[yi|xi] =
exp(a0 + a1xi1 + ... + adxid)

1 + exp(a0 + a1xi1 + ... + adxid)

yi = {0, 1} denotes the class, e.g. ‘surviving’ or ‘dead’

• Probit

E[yi|xi] = Φ (a0 + a1xi1 + a2xi2 + ... + adxid)

• CART

• Neural networks
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Linearly Non-separable Classification Problem
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Outline of the Talk 11

Outline of the Talk
√

1. Motivation

2. Support Vector Machines and Their Properties

3. Expected Risk vs. Empirical Risk Minimisation

4. Realisation of a SVM

5. Non-linear Case

6. Survival Estimation with SVMs
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Support Vector Machines and their Properties 12

Support Vector Machines (SVMs)

SVMs are a group of methods for classification (and regression) that

make use of classifiers providing “high margin”.

• SVMs possess a flexible structure which is not chosen a priori

• The properties of SVMs can be derived from statistical learning

theory

• SVMs do not rely on asymptotic properties; they are especially

useful when d/n is high, i.e. in most practically significant cases

• SVMs give a unique solution
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Support Vector Machines and their Properties 13

Classification Problem

Training set: {(xi, yi)}n
i=1 with the distribution P (x, y).

Find the class y of a new object x using the classifier

f : X 7→ {+1;−1}, such that the expected risk R(f) is minimal.

xi is the vector of the i-th object characteristics;

yi ∈ {−1, +1} or {0, 1} is the class of the i-th object.

Regression Problem

Setup as for the classification problem but: y ∈ R
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Expected Risk vs. Empirical Risk Minimisation 14

Expected Risk Minimisation

Expected risk

R(f) =

∫

1

2
|f(x) − y|dP (x, y) = EP (x,y)[L]

can be minimised directly with respect to f

fopt = arg min
f∈F

R(f)

The loss L = 1
2 |f(x) − y| = 0 if classification is correct

= 1 if classification is wrong

F is a set of (non)linear classifier functions
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Expected Risk vs. Empirical Risk Minimisation 15

Empirical Risk Minimisation

In practice P (x, y) is usually unknown: use Empirical Risk

R̂(f) =
1

n

n
∑

i=1

1

2
|f(xi) − yi|

Minimisation (ERM) over the training set {(xi, yi)}n
i=1

f̂n = arg min
f∈F

R̂(f)
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Empirical Risk vs. Expected Risk

Function class

Risk

f fopt

R

R (f)

fn
ˆ

R (f)
ˆ

Rˆ
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Expected Risk vs. Empirical Risk Minimisation 17

Convergence

From the law of large numbers

lim
n→∞

R̂(f) = R(f)

In addition ERM satisfies

lim
n→∞

min
f∈F

R̂(f) = min
f∈F

R(f)

if “F is not too big”.
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Vapnik-Chervonenkis (VC) Bound

A basic result of Statistical Learning Theory (for linear classifier

functions):

R(f) ≤ R̂(f) + φ

(

h

n
,
ln(η)

n

)

when the bound holds with probability 1 − η and

φ

(

h

n
,
ln(η)

n

)

=

√

h(ln 2n
h + 1) − ln(η

4 )

n

Structural Risk Minimisation – search for the optimal model structure

described by Sh ⊆ F such that the VC bound is minimised; f ∈ Sh (h is

VC dimension)
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Vapnik-Chervonenkis (VC) Dimension

Definition. h is VC dimension of a set of functions if there exists a set

of points {xi}h
i=1 such that these points can be separated in all 2h

possible configurations, and no set {xi}q
i=1 exists where q > h satisfies

this property.

Example 1. The functions A sin θx has an infinite VC dimension.

Example 2. Three points on a plane can be shattered by a set of linear

indicator functions in 2h = 23 = 8 ways (whereas 4 points cannot be

shattered in 2q = 24 = 16 ways). The VC dimension equals h = 3.
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VC Dimension. Example
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Regularised LS Estimation and VC Bound

Problem solved:

min
f∈F

n
∑

i=1

{f(xi) − yi}2 + λΩ(f)

The regularised functional: a specific type of the VC bound with a

quadratic empirical loss function

The Classifier Function Class of an SVM

FΛ = {f : R
n 7→ R|f(x) = w⊤x + b, ‖w‖ ≤ Λ}
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Realisation of an SVM 22

Linearly Separable Case

The training set: {(xi, yi)}n
i=1, yi = {±1}, xi ∈ R

d. Find the classifier

with the highest “margin” – the gap between the parallel hyperplanes

separating two classes where the vectors of neither class can lie.

Maximisation of the margin minimises the VC dimension.
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Realisation of an SVM 23

Let x⊤w + b = 0 be a separating hyperplane. Then d+ (d−) will be the

shortest distance to the closest objects of the classes +1 (−1).

x⊤
i w + b ≥ +1 for yi = +1

x⊤
i w + b ≤ −1 for yi = −1

combine them into one constraint

yi(x
⊤
i w + b) − 1 ≥ 0 i = 1, 2, ..., n (1)

The canonical hyperplanes x⊤
i w + b = ±1 are parallel and the distance

between each of them and the separating hyperplane is d± = 1/‖w‖.
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Realisation of an SVM 24

Linear SVMs. Separable Case

The margin is d+ + d− = 2/‖w‖. To maximise it minimise the

Euclidean norm ‖w‖ subject to the constraint (1).

Survival Analysis with SVMs



Realisation of an SVM 25

The Lagrangian Formulation

The Lagrangian for the primal problem

LP =
1

2
‖w‖2 −

n
∑

i=1

αi{yi(x
⊤
i w + b) − 1}

The Karush-Kuhn-Tucker (KKT) Conditions

∂LP

∂wk
= 0 ⇔

∑n
i=1 αiyixik = wk k = 1, ..., d

∂LP

∂b = 0 ⇔
∑n

i=1 αiyi = 0

yi(x
⊤
i w + b) − 1 ≥ 0 i = 1, ..., n

αi ≥ 0

αi{yi(x
⊤
i w + b) − 1} = 0
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Substitute the KKT conditions into LP and obtain the Lagrangian for

the dual problem

LD =

n
∑

i=1

αi −
1

2

n
∑

i=1

n
∑

j=1

αiαjyiyjx
⊤
i xj

The primal and dual problems are

min
wk,b

max
αi

LP

max
αi

LD

s.t.

αi ≥ 0

n
∑

i=1

αiyi = 0

Since the optimisation problem is convex the dual and primal

formulations give the same solution.
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The Classification Stage

The classification rule is:

g(x) = sign(x⊤w + b)

where

w =
∑n

i=1 αiyixi

b = 1
2 (x+ + x−)⊤w

x+ and x− are any support vectors from each class

αi = arg max
αi

LD

subject to the constraint yi(x
⊤
i w + b) − 1 ≥ 0 i = 1, 2, ..., n.
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Realisation of an SVM 28

Adaption of an SVM to Hazard Estimation

The score values f = x⊤w + b estimated by an SVM correspond to

hazard:

f 7→ hazard

Suggestion:

• select an area f ± ∆f

• count the number of deaths and survivals in the area

• if the data is representative of the whole population
ˆhazard = #deaths/#survivals

• estimate the mapping f 7→ ˆhazard for several f ± ∆f

Survival Analysis with SVMs



Realisation of an SVM 29

Linear SVMs. Non-separable Case

In the non-separable case it is impossible to separate the data points

with hyperplanes without an error.
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The problem can be solved by introducing the positive variables {ξi}n
i=1

in the constraints

x⊤
i w + b ≥ 1 − ξi for yi = 1

x⊤
i w + b ≤ −1 + ξi for yi = −1

ξi ≥ 0 ∀i

If ξi > 1, an error occurs. The objective function in this case is

1

2
‖w‖2 + C(

n
∑

i=1

ξi)
ν

where ν is a positive integer controlling sensitivity to outliers;

C (“capacity”) controls the tolerance to errors on the training set.

Under such a formulation the problem is convex
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The Lagrangian Formulation

The Lagrangian for the primal problem for ν = 1:

LP =
1

2
‖w‖2 + C

n
∑

i=1

ξi −
n

∑

i=1

αi{yi(x
⊤
i w + b) − 1 + ξi} −

n
∑

i=1

ξiµi

The primal problem:

min
wk,b,ξi

max
αi,µi

LP
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The KKT Conditions
∂LP

∂wk
= 0 ⇔ wk =

∑n
i=1 αiyixik k = 1, ..., d

∂LP

∂b = 0 ⇔
∑n

i=1 αiyi = 0

∂LP

∂ξi
= 0 ⇔ C − αi − µi = 0

yi(x
⊤
i w + b) − 1 + ξi ≥ 0

ξi ≥ 0

αi ≥ 0

µi ≥ 0

αi{yi(x
⊤
i w + b) − 1 + ξi} = 0

µiξi = 0
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For ν = 1 the dual Lagrangian will not contain ξi or their Lagrange

multipliers

LD =
n

∑

i=1

αi −
1

2

n
∑

i=1

n
∑

j=1

αiαjyiyjx
⊤
i xj (2)

The dual problem is

max
αi

LD

subject to

0 ≤ αi ≤ C
n

∑

i=1

αiyi = 0
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Linear SVM. Non-separable Case
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Non-linear Case 35

Non-linear SVMs

Map the data to the Hilbert space H and perform classification there

Ψ : R
d 7→ H

Note, that in the Lagrangian formulation (2) the training data appear

only in the form of dot products x⊤
i xj , which can be mapped to

Ψ(xi)
⊤Ψ(xj).

If a kernel function K exists such that K(xi, xj) = Ψ(xi)
⊤Ψ(xj), then

we can use K without knowing Ψ explicitly
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Non-linear Case 36

Mapping into the Feature Space. Example

R
2 7→ R

3,

Ψ(x1, x2) = (x2
1,
√

2x1x2, x
2
2)

⊤, K(xi, xj) = (x⊤
i xj)

2

Data Space Feature Space
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Non-linear Case 37

Mercer’s Condition (1909)

A necessary and sufficient condition for a symmetric function K(xi, xj)

to be a kernel is that it must be positive definite, i.e. for any data set

x1, ..., xn and any real numbers λ1, ..., λn the function K must satisfy

n
∑

i=1

n
∑

j=1

λiλjK(xi, xj) ≥ 0

Some examples of kernel functions:

K(xi, xj) = e−(xi−xj)
⊤Σ−1(xi−xj)/2 – Gaussian kernel

K(xi, xj) = (x⊤
i xj + 1)p – polynomial kernel

K(xi, xj) = tanh(kx⊤
i xj − δ) – hyperbolic tangent kernel

Survival Analysis with SVMs
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Classes of Kernels

A stationary kernel is the kernel which is translation invariant

K(xi, xj) = KS(xi − xj)

An isotropic (homogeneous) kernel is one which depends only on the

norm of the lag vector (distance) between two data points

K(xi, xj) = KI(‖xi − xj‖)

A local stationary kernel is the kernel of the form

K(xi, xj) = K1(
xi + xj

2
)K2(xi − xj)

where K1 is a non-negative function, K2 is a stationary kernel.
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Non-linear Case 39

Matérn kernel

KI(‖xi − xj‖)
KI(0)

=
1

2ν−1Γ(ν)
(
2
√

ν‖xi − xj‖
θ

)νHν(
2
√

ν‖xi − xj‖
θ

)

where Γ is the gamma function and Hν is the modified Bessel function

of the second kind of order ν.

The parameter ν allows to control the smoothness. The Matérn kernel

reduces to the Gaussian kernel for ν → ∞.
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Estimation of Survival Chances for Breast
Cancer Patients

• Data source: the “Breast cancer survival.sav” file supplied with

SPSS and the database used in Lee et al. (2001)

• 325 cases selected and merged in one database (112 deaths, 223

censored cases)

• Predictors: 2 variables that are contained in both databases – the

pathology size and the number of methastased lymph nodes

• an SVM with an anisotropic Gaussian kernel with the radial basis

3Σ1/2 and capacity C = 1 was applied (here Σ = cov. matrix)
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Methodology

• the cases were sorted in ascending order by survival time or time to

censoring

• 5 groups (t = 1, ..., 5) were selected; all 112 death cases are in

groups t = 1, ..., 4; all 213 censored cases are in group t = 5

• an SVM was trained at time t (t = 0, ..., 3); the patients who would

die in period t + 1 were given the label yi = 1, those who would

survive: yi = −1
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The Timeline

t=0 t=1 t=2 t=3 t=4 t=5

28 deaths

1.18
deaths a

month

223 deaths

t

obtaining
test

results

0 months
23.7

months
36.9

months
52.7

months
82.1

months

28 deaths

2.12
deaths a

month

28 deaths

1.75
deaths a

month

28 deaths

0.96
deaths a

month
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Survival Estimation
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Survival Chances (t=0)
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Survival Chances (t=1)

0 5 10

Tumour size, cm

0
5

10
15

20
25

N
um

be
r 

of
 m

et
as

ta
se

d 
ly

m
ph

 n
od

es

Survival Analysis with SVMs



Survival Estimation with SVMs 46

Survival Chances (t=2)
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Survival Chances (t=3)
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